
Chapter 30 Documentation

© Ian Sommerville 2010

1

30 Documentation

Objectives

The objectives of this chapter are to describe the different types of
documentation that may have to be produced for large software systems
and to present guidelines for producing high-quality documents. When you
have read the chapter, you will:

understand why it is important to produce some system documentation,
even when agile methods are used for system development;

understand the standards that are important for document production;

have been introduced to the process of professional document
production.

Contents

30.1 Process documentation
30.2 Product documentation
30.3 Document quality
30.4 Document production

 Chapter 30 Documentation

© Ian Sommerville 2010

2

Large software development projects, irrespective of application, generate a large
amount of associated documentation. If this were all to be printed, the
documentation would probably fill several filing cabinets for moderately large
systems; for very large critical systems, that must be externally certified, it may fill
several rooms. A high proportion of software process costs, especially for regulated
systems, is incurred in producing this documentation. Furthermore, documentation
errors and omissions can lead to errors by end-users and consequent system failures
with their associated costs and disruption. Therefore, managers and software
engineers should pay as much attention to documentation and its associated costs
as to the development of the software itself.

The documents associated with a software project and the system being
developed have a number of associated requirements:

1. They should act as a communication medium between members of the
development team.

2. They should be an information repository to be used by maintenance
engineers.

3. They should provide information for management to help them plan, budget
and schedule the software development process.

4. Some of the documents should tell users how to use and administer the
system.

5. They may be essential evidence to be presented to a regulator for system
certification.

Satisfying these requirements requires different types of document from
informal working documents through to professionally produced user manuals.
Software engineers are usually responsible for producing most of this
documentation although professional technical writers may assist with the final
polishing of externally released information.

For large projects, it is usually the case that documentation starts being
generated well before the development process begins. A proposal to develop the
system may be produced in response to a request for tenders by an external client
or in response to other business strategy documents. For some types of system, a
comprehensive requirements document may be produced which defines the
features required and expected behavior of the system. During the development
process itself, all sorts of different documents may be produced – project plans,
design specifications, test plans etc.

The set of documents that you have to produce for any system depends on
the contract with the client for the system, the type of system being developed and
its expected lifetime, the culture and size of the company developing the system
and the development schedule that it expected. However, documentation produced
during a software project normally falls into two classes:

Chapter 30 Documentation

© Ian Sommerville 2010

3

1. Process documentation These documents record the process of development
and maintenance. Plans, schedules, process quality documents and
organizational and project standards are process documentation.

2. Product documentation This documentation describes the product that is
being developed. System documentation describes the product from the
point of view of the engineers developing and maintaining the system; user
documentation provides a product description that is oriented towards
system users.

Process documentation is produced so that the development of the system
can be managed and is an essential component of plan-driven approaches to
software engineering. An important goal of agile approaches is to minimize the
amount of process documentation produced as this adds overhead without
contributing to the functionality of the system being developed.

Product documentation is used after the system is operational but is also
essential for management of the system development. The creation of a document,
such as a system specification, may represent an important milestone in the
software development process.

An argument that is made by proponents of agile methods is that the
requirement for documentation is one of the major problems with ‘traditional’
software processes. It costs a lot and takes a lot of time to produce and maintain the
documentation and this, inevitably, slows down system production. They argue that
as requirements change so quickly, documentation is out-of-date almost as soon as
it is written and so is, essentially, worthless.

I have a great deal of sympathy for this view. It is often the case that
documentation is unread and out of date and, as I discuss in the next section, I think
that it is possible to minimize the amount of process documentation required.
However, there is still a need to produce product documentation, which describes
the system to users and potential system buyers. This product documentation may
be user manuals that can be printed or may be web-based documentation that
describes the system features and how they can be used.

When systems are developed by distributed teams, especially if these are in
different countries, the informal communication mechanisms favoured by agile
methods such as regular, short meetings, may not work effectively and more formal
written documentation may be needed to facilitate developer communication. The
contract between a contractor and sub-contractors may specify the documentation
that will be produced by the contractor and the corresponding documentation
generated by each sub-contractor.

Documentation may also be required for long-lifetime systems, irrespective
of the development technique used. The critical documentation for such systems is
not necessarily detailed information about the system design – rather, it is
documentation about the critical dependencies in these systems and the rationale
for the design decisions that have been made. So, in situations where you rely on
other systems, you should always document the systems and the features used.
Then, if changes to these systems are made and problems occur, these can be
located and, hopefully, quickly repaired.

 Chapter 30 Documentation

© Ian Sommerville 2010

4

30.1 Process documentation

Effective management requires the process being managed to be visible. Because
software is intangible and the software process involves apparently similar
cognitive tasks rather than obviously different physical tasks, the only way this
visibility can be achieved is through the use of process documentation.

Process documentation falls into a number of categories:

1. Plans, estimates and schedules These are documents produced by managers
which are used to predict and to control the software process.

2. Reports These are documents which report how resources were used during
the process of development.

3. Standards These are documents which set out how the process is to be
implemented. These may be developed from organizational, national or
international standards.

4. Working papers These are often the principal technical communication
documents in a project. They record the ideas and thoughts of the engineers
working on the project, are interim versions of product documentation,
describe implementation strategies and set out problems which have been
identified. They often, implicitly, record the rationale for design decisions.

5. E-mail messages, wikis, etc. These record the details of everyday
communications between managers and development engineers.

The major characteristic of process documentation is that most of it
becomes outdated. Plans may be drawn up on a weekly, fortnightly or monthly
basis. Progress will normally be reported weekly. Memos record thoughts, ideas
and intentions which inevitably change.

Although of interest to software historians, much of this process information
is of little real use after it has gone out of date and there is not normally a need to
preserve it after the system has been delivered. For this reason, advocates of agile
methods argue that projects should minimize the amounts of documentation,
including process documentation, that should be produced.

For internal projects, rather than projects for an external customer, it is
usually possible to radically reduce the amount of process documentation by using
regular meetings to update the team on the progress of the work and to share
information through discussions rather than documents. However, when the project
is being carried out for an external customer, the amount of process documentation
required depends on:

1. The contractual arrangements between the customer and the supplier The
contract may specify that some process documentation, such as project
plans, must be produced and made available to the customer.

2. The attitude of the developers to contractual risk Process documentation
records what went on during the process and, if the developers are
concerned that their work practices may be challenged in court, they may

Chapter 30 Documentation

© Ian Sommerville 2010

5

wish to produce process documentation so that they can defend the approach
that they have taken to the work.

3. The regulatory requirements If a system is externally regulated and has to
be certified before it is used, the regulator may require the production of
process documentation to demonstrate that good practice has been followed
in the development of the system.

There are some process documents that are particularly useful as the
software evolves in response to new requirements. For example, test schedules are
of value during software evolution as they act as a basis for re-planning the
validation of system changes. Of course, automated tests are even better as these
can be re-run as the system is changed.

Working papers, which explain the reasons behind design decisions (design
rationale), are also valuable as they discuss design options and choices made.
Access to this information helps avoid making changes which conflict with these
original decisions. Ideally, of course, the design rationale should be extracted from
the working papers and separately maintained. Unfortunately this hardly ever
happens.

30.2 Product documentation

Product documentation is concerned with describing the delivered software
product. Unlike most process documentation, it has a relatively long life. It must
evolve in step with the product that it describes. Product documentation includes
user documentation, which tells users how to use the software product, and system
documentation, which is principally intended for maintenance engineers.

30.2.1 User documentation
Users of a system are not all the same. The producer of documentation must
structure it to cater for different user tasks and different levels of expertise and
experience. It is particularly important to distinguish between end-users and
system administrators:

1. End-users use the software to assist with some task. This may be flying an
aircraft, managing insurance policies, writing a book, etc. They want to
know how the software can help them. They are not interested in computer
or administration details.

2. System administrators are responsible for managing the software used by
end-users. This may involve acting as an operator if the system is a large
mainframe system, as a network manager is the system involves a network
of workstations or as a technical guru who fixes end-users software
problems and who liaises between users and the software supplier.

 Chapter 30 Documentation

© Ian Sommerville 2010

6

To cater for these different classes of user and different levels of user
expertise, several documents (or perhaps chapters in a single document) should be
delivered with the software system (Figure 30.1).

The functional description of the system outlines the system requirements
and briefly describes the services provided. This document should provide an
overview of the system. Users should be able to read this document with an
introductory manual and decide if the system is what they need.

The system installation document is intended for system administrators. It
should provide details of how to install the system in a particular environment. It
should contain a description of the files included in the system and the minimal
hardware configuration required. The permanent files which must be established,
how to start the system and the configuration dependent files which must be
changed to tailor the system to a particular host system should also be described.
The use of automated installers for PC software has meant that some suppliers see
this document as unnecessary. In fact, it is still required to help system managers
discover and fix problems with the installation.

The introductory manual should present an informal introduction to the
system, describing its ‘normal’ usage. It should describe how to get started and
how end-users might make use of the common system facilities. It should be
liberally illustrated with examples. Inevitably beginners, whatever their background
and experience, will make mistakes. Easily discovered information on how to
recover from these mistakes and restart useful work should be an integral part of
this document.

The system reference manual should describe the system facilities and their
usage, should provide a complete listing of error messages and should describe
how to recover from detected errors. It should be complete. Formal descriptive
techniques may be used. The style of the reference manual should not be

Figure 30.1: Types
of documentation
and document
users

Provides a detailed description
of all system facilities

Describes how to install the
system on the intended
platforms

Briefly describes how to get
started with the system

Reference
manual

Installation
document

Introductory
manual

Provides an overview of the
system’s purpose and a
description of the most
important system services

Functional system
description

Managers and
system evaluators

System
administrators

Novice users

Experienced users

Chapter 30 Documentation

© Ian Sommerville 2010

7

unnecessarily pedantic and turgid, but completeness is more important than
readability.

A more general system administrator’s guide should be provided for some
types of system such as command and control systems. This should describe the
messages generated when the system interacts with other systems and how to react
to these messages. If system hardware is involved, it might also explain the
operator’s task in maintaining that hardware. For example, it might describe how
to add new hardware to the system or diagnose hardware faults.

As well as manuals, other, easy-to-use documentation might be provided. A
quick reference card listing available system facilities and how to use them is
particularly convenient for experienced system users. This can be supplied as a
short on-line document that can be permanently on display on the user’s screen.

There has been a tendency over the past few years to cut documentation
costs by eliminating user manuals and replacing these with on-line help systems.
These break down user information into simple chunks associated with features of
the system. Unfortunately, these systems suffer from a number of problems:

1. They lack ‘browsability’ in that they assume that user’s have a specific
feature that they are interested in and wish to go immediately to the
description of that feature. In many cases, however, users are interested in
the set of features that are available and wish to have a general overview of
the system. This can be gained from a sequential document such as a user
manual but is much more difficult with a system that is implemented as
linked, discrete chunks of information.

2. They are feature oriented rather than problem-oriented. Users who have a
specific problem to address cannot find out how to do this if they do not
understand the system features that they might use to solve the problem.

On-line systems are, of course, useful but they are not a substitute for well-
written user manuals.

30.2.2 System documentation
System documentation includes all of the documents describing the system itself
from the requirements specification to the final acceptance test plan. Documents
describing the design, implementation and testing of a system are essential if the
program is to be understood and maintained. Like user documentation, it is
important that system documentation is structured, with overviews leading the
reader into more formal and detailed descriptions of each aspect of the system.

For large systems that are developed to a customer’s specification, the
system documentation should include:

1. The requirements document and an associated rationale.

2. A document describing the system architecture.

3. For each program in the system, a description of the architecture of that
program.

 Chapter 30 Documentation

© Ian Sommerville 2010

8

4. For each component in the system, a description of its functionality and
interfaces.

5. Program source code listings, which should be commented where the
comments should explain complex sections of code and provide a rationale
for the coding method used. If meaningful names are used and a good,
structured programming style is used, much of the code should be self-
documenting without the need for additional comments. This information is
now normally maintained electronically rather than on paper with selected
information printed on demand from readers.

6. Validation documents describing how each program is validated and how
the validation information relates to the requirements. These may be
required for the quality assurance processes in the organization.

7. A system maintenance guide, which describes known problems with the
system, describes which parts of the system are hardware and software
dependent and which describes how evolution of the system has been taken
into account in its design.

A common system maintenance problem is ensuring that all representations
are kept in step when the system is changed. To help with this, the relationships
and dependencies between documents and parts of documents should be recorded
in a document management system.

For smaller systems and systems that are developed as software products,
system documentation is usually less comprehensive. Schedule pressures on
developers mean that documents are simply never written or, if written, are not
kept up to date. These pressures are sometimes inevitable but, in my view, at the
very least you should always try to maintain a specification of the system, an
architectural design document and the program source code.

Unfortunately, documentation maintenance is often neglected.
Documentation may become out of step with its associated software, causing
problems for both users and maintainers of the system. The natural tendency is to
meet a deadline by modifying code with the intention of modifying other
documents later.

Often, pressure of work means that this modification is continually set aside
until finding what is to be changed becomes very difficult indeed. The best
solution to this problem is to support document maintenance with software tools
which record document relationships, remind software engineers when changes to
one document affect another and record possible inconsistencies in the
documentation. Such a system is described by Garg and Scacchi (1990).

30.3 Document quality

Document quality is as important as program quality. Without information on how
to use a system or how to understand it, the utility of that system is degraded.

Chapter 30 Documentation

© Ian Sommerville 2010

9

Achieving document quality requires management commitment to document
design, standards, and quality assurance processes. Producing good documents is
neither easy nor cheap and many software engineers find it more difficult that
producing good quality programs.

Unfortunately, much computer system documentation is badly written,
difficult to understand, out-of-date or incomplete. Although the situation is
improving, many organizations still do not pay enough attention to producing
system documents, which are well-written pieces of technical prose.

30.3.1 Document structure
The document structure is the way in which the material in the document is
organized into chapters and, within these chapters, into sections and sub-sections.
Document structure has a major impact on readability and usability and it is
important to design this carefully when creating documentation. As with software
systems, you should design document structures so that the different parts are as
independent as possible. This allows each part to be read as a single item and
reduces problems of cross-referencing when changes have to be made.

Component Description

Identification data Data such as a title and identifier that uniquely identifies
the document.

Table of contents Chapter/section names and page numbers.

List of illustrations Figure numbers and titles

Introduction Defines the purpose of the document and a brief
summary of the contents

Information for use of the
documentation

Suggestions for different readers on how to use the
documentation effectively.

Concept of operations An explanation of the conceptual background to the use of
the software.

Procedures Directions on how to use the software to complete the
tasks that it is designed to support.

Information on software
commands

A description of each of the commands supported by the
software.

Error messages and problem
resolution

A description of the errors that can be reported and how
to recover from these errors.

Glossary Definitions of specialized terms used.

Related information sources References or links to other documents that provide
additional information

Navigational features Features that allow readers to find their current location
and move around the document.

Index A list of key terms and the pages where these terms are
referenced.

Search capability In electronic documentation, a way of finding specific
terms in the document.

Figure 30.2
Suggested
components in a
software user
document

 Chapter 30 Documentation

© Ian Sommerville 2010

10

Structuring a document properly also allows readers to find information
more easily. As well as document components such as contents lists and indexes,
well-structured documents can be skim read so that readers can quickly locate
sections or sub-sections that are of most interest to them.

The IEEE standard for user documentation (IEEE, 2001) proposes that the
structure of a document should include the components shown in Figure 30.2. The
standard makes clear that these are desirable or essential features of a document but
makes clear that the ways in which these components are provided depends on the
designers of the documentation. Some (such as a table of contents) are clearly
separate sections; other components such as navigational features will be found
throughout the document.

As I discuss in the next section, this IEEE standard is a generic standard
and, if the use of this standard is mandated, then all of these components must be
included. However, many organizations will use the standard as a guide and will
not necessarily include all of the components shown in Figure 30.2. In such
circumstances, there are some minimal structuring guidelines that I believe should
always be followed:

1. All documents, however short, should have a cover page which identifies
the project, the document, the author, the date of production, the type of
document, configuration management and quality assurance information,
the intended recipients of the document, and the confidentiality class of the
document. It should also include information for document retrieval (an

Figure 30.3 An
example of a
document cover

LSCITS Project

Socio-technical Systems Engineering

Title: STSE toolkit specification
Authors: I. Sommerville and G. Baxter
Date: 10th May 2009
Type: Working paper
Version: 1.2
Doc id: StA/5/P2/2009

Review date: N/A
Approved: N/A

Confidentiality: Commercial in Confidence

© St Andrews University 2009

Chapter 30 Documentation

© Ian Sommerville 2010

11

abstract or keywords) and a copyright notice. Figure 30.3 is an example of a
possible front cover format.

2. Documents that are more than a few pages long should be divided into
chapters with each chapter structured into sections and sub-sections. A
contents page should be produced listing these chapters, sections and sub-
sections. A consistent numbering scheme for chapters, sections and sub-
sections should be defined and chapters should be individually page
numbered (the page number should be chapter-page). This simplifies
document change as individual chapters may be replaced without re-printing
the whole document.

3. If a document contains a lot of detailed, reference information it should have
an index. A comprehensive index allows information to be discovered easily
and can make a badly written document usable. Without an index, reference
documents are virtually useless.

4. If a document is intended for a wide spectrum of readers who may have
differing vocabularies, a glossary should be provided which defines the
technical terms and acronyms used in the document.

Document structures are often defined in advance and set out in
documentation standards. This has the advantage of consistency although it can
cause problems. Standards may not be appropriate in all cases and an unnatural
structure may have to be used if standards are thoughtlessly imposed.

30.3.2 Writing style
Standards and quality assessment are essential if good documentation is to be
produced but document quality is fundamentally dependent on the writer’s ability
to construct clear and concise technical prose. In short, good documentation
requires good writing.

Writing documents well is neither easy nor is it a single stage process.
Written work must be written, read, criticized and then rewritten until a satisfactory
document is produced. Technical writing is a craft rather than a science but some
broad guide-lines about how to write well are:

1. Use active rather than passive tenses It is better to say ‘You should see a
flashing cursor at the top left of the screen’ rather than ‘A flashing cursor
should appear at the top left of the screen’.

2. Use grammatically correct constructs and correct spelling To boldly go on
splitting infinitives (like this) and to misspell words (like mispell) irritates
many readers and reduces the credibility of the writer in their eyes.
Unfortunately, English spelling is not standardized and both British and
American readers are sometimes irrational in their dislike of alternative
spellings.

3. Do not use long sentences that present several different facts It is better to
use a number of shorter sentences. Each sentence can then be assimilated on

 Chapter 30 Documentation

© Ian Sommerville 2010

12

its own. The reader does not need to maintain several pieces of information
at one time to understand the complete sentence.

4. Keep paragraphs short As a general rule, no paragraph should be made up
of more than seven sentences. Our capacity for holding immediate
information is limited. In short paragraphs, all of the concepts in the
paragraph can be maintained in our short-term memory, which can hold
about 7 chunks of information.

5. Don’t be verbose If you can say something in a few words do so. A lengthy
description is not necessarily more profound. Quality is more important then
quantity.

6. Be precise and define the terms which you use Computing terminology is
fluid and many terms have more than one meaning. If you use terms like
module or process make sure that your definition is clear. Collect definitions
in a glossary.

7. If a description is complex, repeat yourself It is often a good idea to present
two or more differently phrased descriptions of the same thing. If readers
fail to completely understand one description, they may benefit from having
the same thing said in a different way.

8. Make use of headings and sub-headings These break up a chapter into parts
which may be read separately. Always ensure that a consistent numbering
convention is used.

 9. Itemize facts wherever possible It is usually clearer to present facts in a list
rather than in a sentence. Use textual highlighting (italics or underlining)
for emphasis.

10. Do not refer to information by reference number alone Give the reference
number and remind the reader what that reference covered. For example,
rather than say ‘In section 1.3 …’ you should say ‘In section 1.3, which
described management process models, …’

Documents should be inspected in the same way as programs. During a
document inspection, the text is criticized, omissions pointed out and suggestions
made on how to improve the document. In this latter respect, it differs from a code
inspection which is an error finding rather than an error correction mechanism.

As well as personal criticism, you can also use grammar checkers which are
incorporated in word processors. These checkers find ungrammatical or clumsy
uses of words. They identify long sentences and paragraphs and the use of passive
rather than active tenses. These checkers are not perfect and sometimes they use
outmoded style rules or rules which are specific to one country. Nevertheless,
because they often check style as you are typing, they can help identify phrases
which could be improved.

Chapter 30 Documentation

© Ian Sommerville 2010

13

30.3.3 Documentation standards
Documentation standards act as a basis for document quality assurance. Documents
produced according to appropriate standards have a consistent appearance,
structure and quality. I have already introduced the IEEE standard for user
documentation in the previous section and will discuss this standard in more detail
shortly. However, it is not only standards that focus on documentation that are
relevant. Other standards that may be used in the documentation process are:

1. Process standards These standards define the process that should be
followed for high-quality document production.

2. Product standards These are standards that govern the documents
themselves e.g. their organization and structure.

3. Interchange standards Virtually all documents are now stored in electronic
formats. However, these may be developed at different times using different
systems so interchange standards are required to ensure that all electronic
copies of documents are compatible.

Standards are, by their nature, designed to cover all cases and, consequently,
can sometimes seem unnecessarily restrictive. It is therefore important that, for
each project, the appropriate standards are chosen and modified to suit that
particular project. Small projects developing systems with a relatively short
expected lifetime need different standards from large software projects where the
software may have to be maintained for 10 or more years.

Process standards

Process standards define the approach to be taken in producing documents. This
generally means defining the software tools which should be used for document
production and defining the quality assurance procedures which ensure that high-
quality documents are produced.

Document process quality assurance standards must be flexible and must be
able to cope with all types of document. In some cases, where documents are
simply working papers or memos, no explicit quality checking is required.
However, where documents are formal documents, that is, when their evolution is
to be controlled by configuration management procedures, a formal quality process
should be adopted. Figure 3 illustrates one possible process.

Drafting, checking, revising and re-drafting is an iterative process which
should be continued until a document of acceptable quality is produced. The
acceptable quality level will depend on the document type and the potential readers
of the document.

 Chapter 30 Documentation

© Ian Sommerville 2010

14

Product standards

Product standards apply to all documents produced in the course of the software
development. Documents should have a consistent appearance and, documents of
the same class should have a consistent structure. Document standards are project-
specific but should be based on more general organizational standards.

Examples of product standards which should be developed are:

1. Document identification standards As large projects typically produce
thousands of documents, each document must be uniquely identified. For
formal documents, this identifier may be the formal identifier defined by the
configuration manager. For informal documents, the project manager should
define the style of the document identifier.

2. Document structure standards As discussed in the previous section, there is
an appropriate structure for each class of document produced during a
software project. Structure standards should define this organization. They
should also specify the conventions used for page numbering, page header
and footer information, and section and sub-section numbering.

3. Document presentation standards Document presentation standards define a
‘house style’ for documents and they contribute significantly to document
consistency. They include the definition of fonts and styles used in the
document, the use of logos and company names, the use of color to
highlight document structure, etc.

4. Document update standards As a document is changed to reflect changes in
the system, a consistent way of indicating these changes should be used.
These might include the use of different colors of cover to indicate a new
document version and the use of change bars to indicate modified or deleted
paragraphs. These can be added automatically by most word processing
systems. The web site providing access to the documents should link to all
versions and should clearly indicate which is the most recent version of the
document.

Document standards should apply to all project documents and to the initial
drafts of user documentation. In many cases, however, user documentation has to
be presented in a form appropriate to the user rather than the project and it should
be recast into that form during the production process.

Interchange standards

Document interchange standards are important as more and more documents are
produced in electronic format as well as or instead of on paper. Problems that
commonly arise when interchanging documents are:

Chapter 30 Documentation

© Ian Sommerville 2010

15

1. Documents developed in different countries may use different character
sets.

2. Different versions of word processing software may be incompatible so that
newer documents cannot be read by previous versions of the software.
There may be slight variations in the implementation of features, which
results in layout changes in existing documents.

 3. If organizations merge, their document interchange standards may be
incompatible.

4. Supplementary programs and add-ins (e.g. a bibliography manager) may not
be used across an organization.

For documentation that is delivered with a software system, the Adobe Portable
Document Format (PDF) is normally used. However, when documents are
exchanged by the development team and drafts are circulated within an
organization these are often in the format of whatever word processor is used (often
Microsoft Word but sometimes Open Office, Google Docs or Latex).

Assuming that the use of a standard word processor and graphical editing
system is mandated in the process standards, interchange standards define the
conventions for using these tools. The use of interchange standards, allows
documents to be transferred electronically and re-created in their original form.

Interchange standards are more than simply an agreement to use a common
version of a system for document production. Examples of interchange standards
include the use of an agreed standard macro set if a text formatting system is used
for document production or the use of a standard style sheet for a word processor.
Interchange standards may also limit the fonts and text styles used because of
differing printer and display capabilities.

30.3.4 The IEEE standard for user documentation
The first IEEE standard for user documentation (IEEE, 1987) was produced in
1987 and, at the time of writing, a new draft of this standard is being prepared for
publication (IEEE, 2001).

Like all standards, this standard encapsulates wisdom and experience about
software documentation and proposes a structure for user documentation. Using
this structure as a basis, the standard discusses the content of software user
documentation and proposes formatting standards for these documents.
I have already covered the documentation structure proposed by the latest version
of the standard. To illustrate the formatting advice in the standard, here are some
quotations from the current draft standard of good practice:

The documentation should be provided in media and formats that allow its
use by those with vision, hearing or other physical limitation.

A description of how to print the electronic documentation should be
included in both the electronic and the printed documentation.

 Chapter 30 Documentation

© Ian Sommerville 2010

16

Because some users cannot distinguish between colors, documentation
should provide text cues rather than using colors such as red and green as
the only way to convey meaning.

Warnings, cautions and notes shall be displayed in a consistent format that
is readily distinguishable from ordinary text or instructional steps.

Documentation formats for user-entered commands or codes shall clearly
distinguish between literals (to be input exactly as shown) and variables (to
be selected by the user).

Illustrations that accompany text should appear adjacent to their first
reference in the text so that the associated text and illustration can be
viewed simultaneously.

You can see from these that the standard is helpful without being
proscriptive and therefore different conventions used by different companies and
organizations can be accommodated.

Like all standards, this documentation standard has to be adapted to the
local situation where it is used. These should instantiate the advice in the standard
to the local situation and define the specific structures and formats that should be
used.

30.4 Document production

Document preparation is the process of creating a document and formatting it for
publication. Figure 30.4 shows the document production process as being split into
3 stages namely document creation, polishing and production. Modern word
processing systems are now integrated packages of software tools that support all
parts of this process. However, it is still the case that for the highest-quality
documents, it is best to use separate tools for some preparation processes rather
than the built-in word processor functions. The three phases of preparation and
associated support facilities are:

1. Document creation The initial input of the information in the document.
This is supported by word processors and text formatters, table and equation
processors, drawing and art packages.

2. Document polishing This process involves improving the writing and
presentation of the document to make to make it more understandable and
readable. This involves finding and removing spelling, punctuation and
grammatical errors, detecting clumsy phrases and removing redundancy in
the text. The process may be supported by tools such as on-line dictionaries,
spelling checkers, grammar and style checkers and style checkers.

3. Document production This is the process of preparing the document for
professional printing. It is supported by desktop-publishing packages,
artwork packages and type styling programs.

Chapter 30 Documentation

© Ian Sommerville 2010

17

As well as these tools to support the document production process,
configuration management systems, information retrieval systems and hypertext
systems may also be used to support document maintenance, retrieval and
management.

Modern word processing systems are screen based and combine text editing
and formatting. The image of the document on the user’s terminal is, more or less,
the same as the final form of the printed document. Finished layout is immediately
obvious. Errors can be corrected and layout improved before printing the
document. However, programmers who already use an editor for program
preparation may sometimes prefer to use a separate editor and text formatting
system.

Text formatting systems such as Latex interpret a layout program specified
by the document writer. Layout commands (often chosen from a standard,
definable command set) are interspersed with the text of the document. The text
formatter processes these commands and the associated text and lays the document
out according to the programmer’s instructions.

Text formatting systems can look ahead at the text to be laid out so can
make better layout decisions than word processing systems whose working context
is more restricted. Latex is also far better than word processor in handling
mathematics and formulae. Because the commands are really a programming
language, programmers often prefer them to word processors but other, non-
technical users usually find them more difficult to use.

The major disadvantage of text processors, once their programming has
been mastered, is that they do not provide an immediate display of the output they

Create
initial draft

Review
draft

Incorporate
review

comments

Re-draft
document

Proofread
text

Produce
final draft

Check
final draft

Layout
text

Review
layout

Produce
print masters

Print
copies

Stage 1:
Creation

Stage 2:
Polishing

Stage 3:
Production

Approved document

Approved document

Figure 30.4
Document
production

 Chapter 30 Documentation

© Ian Sommerville 2010

18

produce. The user must process the text then display the output using a preview
package. If a formatting or layout error is discovered, it cannot be fixed
immediately. The original source must be modified and the preview process
repeated. Thus, although they can result in higher quality documents, most users
find text formatters more inconvenient than word processors.

The final stage of document production is a skilled task that, for documents
with large print runs, should be left to professional printers. However, desktop
publishing (DTP) systems, such as Quark Xpress, and graphics systems that
support scanning and processing photographs and artwork (Photoshop) are now
universally used. DTP systems partially automate the layout of text and graphics.
They allow very fine-grain control over the layout and look of a document and can
be used by engineers to produce finished system documentation.

The advantage of using a publishing system is that the cost of producing
high-quality documents is reduced because some of the steps in the production
process are eliminated. Even documents that are produced in small numbers can be
produced to a high standard. The disadvantage of using desktop publishing systems
is that they do not automate the skills of the graphic designer. Their seductive ease-
of-use means that unskilled users may produce unattractive and badly designed
documents.

An enormous number of documents are produced in the course of a project
and these need to be managed so that the right version of the document is available
when required. If a project is distributed, copies of documents will be produced and
stored at different locations and it is very important to maintain a ‘master file’ of
documents which contains the definitive versions of each document. This helps
minimize a very common problem that arises when users of a document make
mistakes because they are not working from the current version of a document.

Each document should have a unique record and this can be used as a key in
a document database record. However, retrieval by other fields such as the title and
author should also be supported.

The basic problem with managing documents using a file system to store the
documents and a database management system to maintain document information
is that users have to be disciplined in the way they use they system. They must

Document
database

Document retrieval
system

Document version
manager

Document entry
system

Submitted
document

Indexes

document

User query

Retrieved
document

Figure 30.5 A
document
management
system

Chapter 30 Documentation

© Ian Sommerville 2010

19

ensure that they check out a copy of the document from the system each time they
need it rather than use a local copy on their computer or the copy that they have
printed. In practice, achieving this level of discipline is difficult and errors are
always likely to arise.

In very large projects, such as the software for an aircraft, specialized
document management systems may be used that integrate the storage of the
documents and the maintenance of document information (Figure 30.5). Document
management software allows related documents to be linked, maintains records of
who has checked out documents, may support the compression and de-compression
of document text and provides indexing and information retrieval facilities so that
documents can be found. Document management systems may also include version
management facilities so that different document versions may be maintained.

30.4.1 On-line documentation
The on-line documentation delivered with a system can range from simple ‘read
me’ files that provide very limited information about the software through
interactive help systems to a complete web-based suite of system documentation
including user manuals, tutorials, etc. However, for most applications, a hypertext-
based help system is the most commonly provided on-line documentation.
Sometimes, this is a built-in help system that is delivered as part of the application.
More commonly, however, the help system is web-based so that users need an
Internet connection to access the information.

The main advantage with on-line documentation is, of course, its
accessibility. It is not necessary for users to find manuals, there is no possibility of
picking up out-of-date documentation and search facilities can be used to locate
information quickly. In principle, built-in help systems can have ‘context
awareness’ so that they know what system features are being used. This means that
they can give help to support the current user activities. Web-based help systems
can be used to provide information to potential system buyers about the features of
the system.

However, built-in and web-based help systems have several disadvantages,
which means that many people still prefer paper-based documentation. These are:

1. They lack ‘browsability’ so that readers cannot easily skim through them to
find the information they need. We often find it difficult to characterize the
information we want from documentation although we can recognize it
when we find it. Browsing is the key mechanism that we use when
searching in this way. Browsing also offers opportunities for serendipitous
discovery of system facilities that were unknown.

2. Screens still have a much resolution than paper and hence it is more difficult
and tiring to read a document on the screen rather than on paper.

3. It is very easy for users to get lost in web-based help systems and they
consequently find it difficult to navigate to where they want to go.

 Chapter 30 Documentation

© Ian Sommerville 2010

20

At the time of writing, tablets such as the iPad have only just been
introduced and they have not yet had any impact on the ways that on-line
documentation is accessed. It is possible that these will change the balance between
paper and on-line documents and paper-based documentation will be less and less
used.

When designing screen-based documentation, you should always bear these
problems in mind. Consequently, although both screen-based and paper-based
documents should be well-written, different designs are needed for electronic and
paper documentation. Because of the differences between screens and paper,
simply converting a word processor document to a set of web pages rarely
produces high-quality on-line documentation.

Online documentation is part of more general user support systems that
provide help and support to system users. These are discussed in some detail by
Dix et al. (2004) and Shneiderman and Plaisant (2004)

KEY POINTS

Software documentation is used to describe the system to its users and
to software engineers who are responsible for maintaining the system.

Documentation at different levels of detail should be developed for
different types of user.

Agile methods try to eliminate documentation as it is often out of date
and little used. However, some user documentation is necessary for
almost all systems and documentation on the system requirements and
architecture is useful for system maintenance.

Document quality is very important if documents are to be useful.
Documents should be well-structured and written using simple and clear
language.

Documentation standards may be process standards, defining how
documents should be produced, product standards, defining document
organization or document interchange standards.

Document management systems may be used in very large projects to
ensure that documentation is maintained and readily accessible.

FURTHER READING

The Art of Technical Documentation 2nd ed. This book is primarily aimed at
technical writers and prospective technical writers and is not specific to software
documentation. However, it includes good general advice on document
presentation and style. (K. Haramundanis, Woburn-MA: Butterworth-Heinemann,
1998)

Chapter 30 Documentation

© Ian Sommerville 2010

21

Writing for Science and Engineering: Papers, Presentations and Reports. Again, this
is a general book on documentation. It is more detailed than Haramundanis’s book
and includes very specific advice and checklists on structure and style. (H. Silyn-
Roberts. Woburn-MA: Butterworth-Heinemann, 2000)

Read Me First: A Style Guide for the Computer Industry. This book includes specific
information and advice on writing style for software and hardware documents.
Includes information on writing for international audiences. It was originally
developed for people involved in writing documentation for Sun software and
hardware systems. (3rd edition, Sun Technical Publications, 2010)

Writing for the Web. Neilsen is an eminent user interface design consultant and he
has put together a comprehensive site with lots of advice about writing for the
web, which is also generally relevant for online documentation. (J. Neilsen.
http://www.useit.com/papers/webwriting/)

REFERENCES

Dix, A., Finley, J., Abowd, G. and Beale, R. 2004. Human-Computer Interaction,
3rd ed. London: Prentice-Hall.

Garg, P. K. and Scacchi, W. 1990. ‘A hypertext system to maintain software life-
cycle documents’. IEEE Software, 7 (3), 90–8.

IEEE, 1987. IEEE Standard for Software User Documentation, IEEE-Std1063-
1987. New York: Institute of Electrical and Electronics Engineers.

IEEE, 2001. Draft Standard for Software User Documentation, IEEE-
Std1063/D5.1. 2001. New York: Institute of Electrical and Electronics Engineers.

Shneiderman, B. and Plaisant, C. 2004. Designing the User Interface. Boston:
Addison Wesley.

EXERCISES

30.1 Explain why documentation on the system requirements and architecture
is important for system maintenance.

30.2 Look at the documentation provided for a system that you commonly use.
Write a brief assessment of how useful this is to (a) novice users and (b)
experienced users.

30.3 What problems might arise in interchanging documents when a system is
being developed by a team with members in India and Canada.

30.4 Using the advice on writing clearly given here, assess the quality of writing
in some documents that you use. Rewrite a section of these documents to
make it easier to understand.

 Chapter 30 Documentation

© Ian Sommerville 2010

22

30.5 Explain why it may be necessary to use a document management system
for very large projects.

